If it's not what You are looking for type in the equation solver your own equation and let us solve it.
313=x^2
We move all terms to the left:
313-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+313=0
a = -1; b = 0; c = +313;
Δ = b2-4ac
Δ = 02-4·(-1)·313
Δ = 1252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1252}=\sqrt{4*313}=\sqrt{4}*\sqrt{313}=2\sqrt{313}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{313}}{2*-1}=\frac{0-2\sqrt{313}}{-2} =-\frac{2\sqrt{313}}{-2} =-\frac{\sqrt{313}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{313}}{2*-1}=\frac{0+2\sqrt{313}}{-2} =\frac{2\sqrt{313}}{-2} =\frac{\sqrt{313}}{-1} $
| 4x+3+2x=7+2x+20 | | -4+7x=108 | | 80x=102 | | 80x=101 | | 4y+60+y=180 | | 3.0=0.4x | | x=3(x-4)=2(-2x+1) | | b*5.8=26.68 | | 2x+30=2x+10 | | x=120-35 | | 90+5x-28=180 | | X+2x-40=180 | | (2x-42)^2=0 | | x+33+39=180 | | X+33+39=q | | 25)n10=40 | | 3x-63=x+3 | | 23)j3=4 | | 6x-2=x+9 | | X-10=-15+2x | | 3(13+3x)=156 | | 10-5w=10 | | 4-2y=-3 | | 3x^2+13x-26=0 | | 1x+1.5=0.50x+4.50 | | (4x+8)=(10x+32) | | x(12)+6=9 | | (3x+6)=(7x-7) | | 3x+36=110 | | 0.1a+1.5=2 | | -27=-w/2 | | -27=w/2 |